References

Adler, Daniel, and Duncan Murdoch. 2020. Rgl: 3d Visualization Using OpenGL. https://r-forge.r-project.org/projects/rgl/.
Arnold, Jeffrey B. 2019. Ggthemes: Extra Themes, Scales and Geoms for Ggplot2. http://github.com/jrnold/ggthemes.
Barfort, Sebastian, Robert Klemmensen, and Erik Gahner Larsen. 2020. “Longevity Returns to Political Office.” Political Science Research and Methods. https://doi.org/10.1017/psrm.2019.63.
Bolker, Ben, and David Robinson. 2020. Broom.mixed: Tidying Methods for Mixed Models. http://github.com/bbolker/broom.mixed.
Brilleman, SL, MJ Crowther, M Moreno-Betancur, J Buros Novik, and R Wolfe. 2018. “Joint Longitudinal and Time-to-Event Models via Stan.” https://github.com/stan-dev/stancon_talks/.
Bryan, Jennifer. 2017. Gapminder: Data from Gapminder. https://CRAN.R-project.org/package=gapminder.
Bryan, Jenny. 2019. STAT 545: Data Wrangling, Exploration, and Analysis with r. https://stat545.com/.
Diez, David M, Christopher D Barr, and Mine Çetinkaya-Rundel. 2014. Introductory Statistics with Randomization and Simulation. First. Scotts Valley, CA: CreateSpace Independent Publishing Platform. https://www.openintro.org/stat/textbook.php?stat_book=isrs.
Downey, Allen. 2012. Think Bayes: Bayesian Statistics Made Simple. Green Tea Press.
Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer. https://doi.org/10.1007/978-1-4614-6868-4.
Eddelbuettel, Dirk, and James Joseph Balamuta. 2017. Extending extitR with extitC++: A Brief Introduction to extitRcpp.” PeerJ Preprints 5 (August): e3188v1. https://doi.org/10.7287/peerj.preprints.3188v1.
Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Douglas Bates, and John Chambers. 2020. Rcpp: Seamless r and c++ Integration. https://CRAN.R-project.org/package=Rcpp.
Eddelbuettel, Dirk, and Romain François. 2011. Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.
Enos, Ryan D. 2014. “Causal Effect of Intergroup Contact on Exclusionary Attitudes.” Proceedings of the National Academy of Sciences 111 (10): 3699–3704. https://doi.org/10.1073/pnas.1317670111.
Firke, Sam. 2020. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://github.com/sfirke/janitor.
Gabry, Jonah, and Ben Goodrich. 2020. Rstanarm: Bayesian Applied Regression Modeling via Stan. https://CRAN.R-project.org/package=rstanarm.
Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2020. Regression and Other Stories. Analytical Methods for Social Research. Cambridge University Press. https://doi.org/10.1017/9781139161879.
Greg Freedman Ellis, and Derek Burk. 2020. Ipumsr: Read IPUMS Extract Files. https://CRAN.R-project.org/package=ipumsr.
Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with lubridate.” Journal of Statistical Software 40 (3): 1–25. https://www.jstatsoft.org/v40/i03/.
———. 2017. R for Data Science. First. Sebastopol, CA: O’Reilly Media. https://r4ds.had.co.nz/.
Henry, Lionel, and Hadley Wickham. 2020. Purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr.
Iannone, Richard, Joe Cheng, and Barret Schloerke. 2020. Gt: Easily Create Presentation-Ready Display Tables. https://github.com/rstudio/gt.
Irizarry, Rafael A. 2019. Introduction to Data Science: Data Analysis and Prediction Algorithms with r. First. Boca Raton, FL: CRC Press.
Ismay, Chester, and Patrick C. Kennedy. 2016. Getting Used to r, RStudio, and R Markdown. https://rbasics.netlify.com.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2017. An Introduction to Statistical Learning: With Applications in r. First. New York, NY: Springer.
Kane, David. 2020. Primer.data. https://github.com/PPBDS/primer.data.
Kane, David, and Thomas Weiss. 2021. Primer.data: Data for Preceptor’s Primer for Bayesian Data Science.
Kay, Matthew. 2021. Ggdist: Visualizations of Distributions and Uncertainty. https://CRAN.R-project.org/package=ggdist.
Kim, Albert Y., and Chester Ismay. 2019. Statistical Inference via Data Science: A ModernDive into r and the Tidyverse. First. Boca Raton, FL: CRC Press.
Kim, Albert Y., Chester Ismay, and Jennifer Chunn. 2018. “The Fivethirtyeight r Package: ’Tame Data’ Principles for Introductory Statistics and Data Science Courses.” Technology Innovations in Statistics Education 11. https://escholarship.org/uc/item/0rx1231m.
———. 2020. Fivethirtyeight: Data and Code Behind the Stories and Interactives at FiveThirtyEight. https://github.com/rudeboybert/fivethirtyeight.
Kuhn, Max, and Julia Silge. 2020. Tidy Modeling with r.
Legler, Julie, and Paul Roback. 2019. Broadening Your Statistical Horizons: Generalized Linear Models and Multilevel Models.
Morgan-Wall, Tyler. 2020. Rayshader: Create Maps and Visualize Data in 2d and 3d. https://github.com/tylermorganwall/rayshader.
Müller, Kirill, and Hadley Wickham. 2020. Tibble: Simple Data Frames. https://CRAN.R-project.org/package=tibble.
Ooms, Jeroen. 2014. “The Jsonlite Package: A Practical and Consistent Mapping Between JSON Data and r Objects.” arXiv:1403.2805 [Stat.CO]. https://arxiv.org/abs/1403.2805.
———. 2018. Gifski: Highest Quality GIF Encoder. https://CRAN.R-project.org/package=gifski.
———. 2020. Jsonlite: A Simple and Robust JSON Parser and Generator for r. https://CRAN.R-project.org/package=jsonlite.
Pedersen, Thomas Lin. 2020. Patchwork: The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
Pedersen, Thomas Lin, and David Robinson. 2020. Gganimate: A Grammar of Animated Graphics. https://CRAN.R-project.org/package=gganimate.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Robbins, Naomi. 2013. Creating More Effective Graphs. First. New York, NY: Chart House.
Sievert, Carson. 2020. Interactive Web-Based Data Visualization with r, Plotly, and Shiny. Chapman; Hall/CRC. https://plotly-r.com.
Sievert, Carson, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec, and Pedro Despouy. 2020. Plotly: Create Interactive Web Graphics via Plotly.js. https://CRAN.R-project.org/package=plotly.
Sjoberg, Daniel D., Michael Curry, Margie Hannum, Karissa Whiting, and Emily C. Zabor. 2020. Gtsummary: Presentation-Ready Data Summary and Analytic Result Tables. https://CRAN.R-project.org/package=gtsummary.
Slowikowski, Kamil. 2020. Ggrepel: Automatically Position Non-Overlapping Text Labels with Ggplot2. http://github.com/slowkow/ggrepel.
Spinu, Vitalie, Garrett Grolemund, and Hadley Wickham. 2020. Lubridate: Make Dealing with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.
Walker, Kyle, and Matt Herman. 2020. Tidycensus: Load US Census Boundary and Attribute Data as Tidyverse and Sf-Ready Data Frames. https://github.com/walkerke/tidycensus.
Waring, Elin, Michael Quinn, Amelia McNamara, Eduardo Arino de la Rubia, Hao Zhu, and Shannon Ellis. 2020. Skimr: Compact and Flexible Summaries of Data. https://CRAN.R-project.org/package=skimr.
Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software Volume 59 (Issue 10). https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.
———. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
———. 2019a. Nycflights13: Flights That Departed NYC in 2013. http://github.com/hadley/nycflights13.
———. 2019b. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.
———. 2019c. Tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-project.org/package=tidyverse.
———. 2020a. Forcats: Tools for Working with Categorical Variables (Factors). https://CRAN.R-project.org/package=forcats.
———. 2020b. Rvest: Easily Harvest (Scrape) Web Pages. https://CRAN.R-project.org/package=rvest.
———. 2020c. Tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.
Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2020. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Wickham, Hadley, and Jim Hester. 2020. Readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.
Wickham, Hadley, Jim Hester, and Jeroen Ooms. 2020. Xml2: Parse XML. https://CRAN.R-project.org/package=xml2.
Wickham, Hadley, and Dana Seidel. 2020. Scales: Scale Functions for Visualization. https://CRAN.R-project.org/package=scales.
Wilkinson, Leland. 2005. The Grammar of Graphics (Statistics and Computing). First. Secaucus, NJ: Springer-Verlag.
Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.
———. 2015b. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.
———. 2015a. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.
———. 2020a. Bookdown: Authoring Books and Technical Documents with r Markdown. https://github.com/rstudio/bookdown.
———. 2020b. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.